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Figure 1: We describe a complete pipeline to model skin deformation around the eyes as a function of gaze and expression parameters. The
face is rendered with our WebGL application in real-time and runs in most modern browsers (a) and mobile devices (b). An example of
automatic facial animation generation while watching a hockey video is shown (c-d). The character starts watching the match with a neutral
expression (c) and gets concerned when a goal is scored (d). Eye movements were generated automatically using salient points computed
from the hockey video.

Abstract

We propose a system for real-time animation of eyes that can be
interactively controlled in a WebGL enabled device using a small
number of animation parameters, including gaze. These animation
parameters can be obtained using traditional keyframed animation
curves, measured from an actor’s performance using off-the-shelf
eye tracking methods, or estimated from the scene observed by the
character, using behavioral models of human vision. We present a
model of eye movement, that includes not only movement of the
globes, but also of the eyelids and other soft tissues in the eye re-
gion. The model includes formation of expression wrinkles in soft
tissues. To our knowledge this is the first system for real-time ani-
mation of soft tissue movement around the eyes based on gaze in-
put.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation I.3.8 [Computer Graphics]:
Three-Dimensional Graphics and Realism—Applications

Keywords: WebGL, human animation, eyes, soft tissue, gaze.

1 Introduction

Whether or not the Bard actually said “The eyes are the window to
your soul,” the importance of eyes is well recognized, even by the
general public. Alfred Yarbus’s influential work in the 1950s and
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1960s quantified this intuition; using an eye tracker, he noted that
observers spend a surprisingly large fraction of time fixated on the
eyes in a picture. The eyes of others are important to humans be-
cause they convey subtle information about a person’s mental state
(e.g., attention, intention, emotion) and physical state (e.g., age,
health, fatigue). Consequently, eyes are carefully scrutinized by
humans and other social animals. Creating realistic computer gen-
erated animations of eyes is, therefore, a very important problem in
computer graphics.

But what is it about eyes that conveys this important information
to observers? To discuss this, we need to introduce some terms.
The colloquial term “eye” is not sufficiently precise. It includes
the globe, the approximately spherical optical apparatus of the eye
that includes the colorful iris. The globe sits in a bony socket in
the skull called the orbit. The term “eye” also usually includes the
upper and lower eyelids and periorbital soft tissues that surround
the orbit, including the margins of the eyebrows. When we refer
to the eye we mean all of these tissues, and we will use the more
specific term where appropriate.

The most obvious property of eyes is gaze, that is, what the eyes
are looking at. This is entirely determined by the position and ori-
entation of each globe relative to the scene. Almost all previous
work in animation of eyes has been on animating gaze, with some
recent attention paid to the appearance of the globe and iris, and the
kinematics of blinks (see Sec. 2 for a review of the related work).
For instance, an excellent recent survey of eye modeling in anima-
tion [Ruhland et al. 2014] does not even mention the soft tissues or
wrinkles surrounding the eyes.

Gaze is clearly important, but the soft tissues of the eye also con-
vey a lot of information. For instance, the well known “Reading
the Mind in the Eyes,” test developed by Autism researcher Baron-
Cohen [2001] used still images of people’s eyes, without any con-
text about what they were looking at, and hence little gaze infor-
mation1. Yet, normal observers are able to read emotion and other
attributes from these images alone. We hypothesize that the state
of soft tissues surrounding the eyes is a major source of informa-

1You can try it yourself at http://well.blogs.nytimes.com/2013/10/03/well-
quiz-the-mind-behind-the-eyes/
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tion and interest to human observers. Animating these tissues is
extremely important for computer graphics, but has largely been
ignored so far.

In this paper we present a system for real-time animation of all the
soft tissues of the eye, driven by gaze and a small number of ad-
ditional parameters. A client application can download our motion
models from a server and render eye animation interactively using
WebGL, a cross platform specification supported by modern web
browsers. Our work is complementary to the important previous
work in gaze animation and on modeling the geometry and appear-
ance of the globe and eyelid. To our knowledge, our work is the
first to specifically address modeling the dynamic motion of eyes
along with details of the surrounding skin deformation.

2 Related Work

As seen in [Ruhland et al. 2014], most of the research attention on
eyes has been on tracking and modeling gaze, especially the gaze
behavior of a character in a virtual environment. In industry, geo-
metric procedural methods are used to model the eye region (e.g.,
[Pinskiy and Miller 2009]). Eye blinks have also been modeled
[Trutoiu et al. 2011]. Eye tracking is now a relatively mature field,
and a wide variety of off-the-shelf eye trackers of varying quality
are available.

Considerable research in the past decade has been focused around
facial simulation and performance capture. Physically based de-
formable models for facial modeling and reconstruction include the
seminal work of Terzopoulos and Waters [1990]. Synthesis of high
definition textures using a generative Bayesian model has been dis-
cussed in [Tsiminaki et al. 2014]. High quality capture of the ap-
pearance of the globe has been described in [Bérard et al. 2014],
and of the eyelid fold in [Bermano et al. 2015]. Modeling the
globe and the eyelids by using active contours has been addressed
in [Moriyama et al. 2006].

Most of the recent work has been on data driven methods. Some
state-of-the-art methods focus on obtaining realism based on multi-
view stereo [Wu et al. 2011; Ghosh et al. 2011; Beeler et al. 2011;
Furukawa and Ponce 2010; Bickel et al. 2007]; this data can be
used to drive blendshapes [Fyffe et al. 2013]. Some of the work
is based on binocular [Valgaerts et al. 2012] and monocular [Gar-
rido et al. 2013; Shi et al. 2014] videos. Recent work by Li et
al. [2013b] described a system for real-time and calibration-free
performance-driven animation. [Weise et al. 2011] presented a sys-
tem for performance-based character animation by using commod-
ity RGB-D cameras that can be used to generate facial expressions
of an avatar in real-time.

With the widespread use of WebGL and the hardware commonly
found in small devices, it is now possible to render high quality
human characters over the web. Both eye diffraction effects [Vill
2014] and skin subsurface scattering proprieties [AlteredQualia
2011] can be rendered at interactive rates. We make use of these
advances to generate facial animations using our model. Our sys-
tem provides novel parametrized facial motion models that require
minimal space and computation to simulate complex tissue move-
ments in the eye region.

3 Skin Movement in Reduced Coordinates

Our goal is to model the movements of the skin around the eyes.
This is the most important part of the face to convey expression,
and therefore it is worthwhile to design a model specifically for this
region. Other parts of the face may be modeled by more traditional
methods. Our model has two motivations: First, since there are
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Figure 2: Overview of the spaces used for modeling skin movement.

no articulating bones in the eye region, the skin slides on the skull
almost everywhere (except at the margins where it slides over the
globes; these margins are discussed below). Therefore, we would
like to efficiently model this skin sliding. Second, we would like
the model to be easily learned using videos of real human subjects.
We have developed such a system for tracking and learning skin
movement using a single video camera; due to space limitations that
is described in a forthcoming paper, with a brief outline provided in
Appendix A. The details are not important here, but it is useful to
keep this motivation in mind to understand our choices.

To represent the motion of skin, we use the reduced coordinate rep-
resentation of skin introduced by [Li et al. 2013a]. This representa-
tion constrains the synthesized skin movement to always slide tan-
gentially on the face, even after arbitrary interpolation between dif-
ferent skin poses. This avoids cartoonish bulging and shrinking and
other interpolation artifacts. We will see in Sec. 6 that deformation
perpendicular to the face can be achieved where needed, for exam-
ple in the movement of the eyelid. This representation also reduces
the data size in most computations.

Skin is represented by its 3D shape in a reference space called skin
space; this space is typically called “modeling space” in graphics
and “material space” in solid mechanics. The key idea is that since
skin is a thin structure, we can also represent it using a 2D param-
eterization π, using an atlas of coordinate charts. See Fig. 2. In
our case, a single chart, denoted skin atlas, is sufficient; it can be
thought of as the skin’s texture space.

Skin is discretized as a mesh S = (V,E), a graph of nv vertices V
and ne edgesE. In contrast to [Li et al. 2013a], this is a Lagrangian
mesh, i.e., a point associated with a vertex is fixed in skin space.
Since most face models use a single chart to provide texture coordi-
nates, these coordinates form a convenient parameterization π. For
instance, that is the case for face models obtained from FaceShift
[Weise et al. 2011], which we use for the examples shown in this
paper. In a slight departure from the notation of [Li et al. 2013a],
a skin material point corresponding to vertex i is denoted Xi in 3D
and ui in 2D coordinates. We denote the corresponding stacked ar-
rays of points corresponding to all vertices of the mesh as X in 3D
skin space and u in the 2D skin atlas.

The skin moves on a fixed 3D body corresponding to the shape
of the head around the eyes. Instead of modeling the body as an
arbitrary deformable object as in [Li et al. 2013a], we account for
the specific structure of the hard parts of the eye region. We model
the body as the union of two rigid parts, the skull (a closed mesh



corresponding to the anatomical skull with the eye sockets closed
by a smooth surface) and the mobile globe that is not spherical, with
a prominent cornea that displaces the eyelid skin. See Fig. 3. This
allows us to efficiently parameterize changes in shape of the body
using the rotation angles of the globe and is useful for modeling
gaze drive motion synthesis and described in detail in Sec. 6.

Figure 3: Body is the union of “skull” and globes.

The skin and body move in physical space, which is the familiar
space in which we can observe the movements of the face, for in-
stance, with a camera. For modeling, we assume there is a head-
fixed camera with projective transformation matrix P that projects
a 3D point corresponding to vertex i (denoted xi) into 2D cam-
era coordinates ui, plus a depth value di. This modeling camera
could be a real camera which is used to acquire video for learning
the model (as outlined in Appendix A) or could be a virtual cam-
era, simply used as a convenient way to parameterize the skin in
physical space. We note that P is invertible, since P is a full pro-
jective transformation, and not a projection. We denote the stacked
arrays of points corresponding to all vertices of the mesh as x in
3D physical space and u in the 2D camera coordinates.

4 Gaze Parameterized Model of Skin Move-
ment

During movements of the eyes, the skin in the eye region slides
over the body. It is this sliding we are looking to model. Following
the standard notation in solid mechanics, the motion of the skin
from 3D skin space to 3D physical space is denoted φ (see Fig. 2).
Therefore, we can write x = φ(X). However, directly modeling
φ is not desirable, as it does not take into account the constraint
that skin can only slide over the body, and not move arbitrarily in
3D. Instead, the key to our reduced coordinate model is that we
represent skin movement in modeling camera coordinates, i.e., we
model the 2D transformation

u = P (φ(π(u)))
def
= fg(u).

Our goal is to directly model the function fg as a function of input
parameters, g, such as gaze and other factors that affect skin move-
ment around the eyes. This representation has the dual advantage
of enforcing the sliding constraint and being easy to acquire video
data from which to learn how the skin moves.

4.1 Factors affecting skin movement in the eye region

We now examine the different input variables g that determine skin
movement in the eye region. The most important and dynamic
cause is eye movements that change gaze, i.e., that change what
the character is looking at. However, other parameters, like eye-
lid aperture and expressions, also affect the skin; we combine these
into the “generalized” gaze vector g.

Gaze. Humans make an average of three rapid gaze shifts (called
saccades) every second, and slow movements called “smooth pur-
suit” to track small moving targets, and other slow movements
called vestibulo-ocular reflex and opto-kinetic reflex to stabilize the
image on the retina. Eye movements change the orientation of the
globe relative to the head. It is not commonly appreciated that the

eyes have full 3 degrees of freedom, even though to point the optical
axis at a target only requires 2 degrees of freedom; rotations about
the optical axis, called “torsion,” have been known and modeled
at least since the 19th century. Any parameterization of 3D rota-
tions could be used. We use Fick coordinates [Fick 1854], which
are widely used in the eye movement literature to describe the 3D
rotation of the eye, since it factors the torsion in a convenient form.
These are a sequence of rotations – first horizontal (g1), then verti-
cal (g2), finally torsion (g3). See Fig. 4.

Eyelid Aperture. Eyelid movements are affected by both gaze and
other factors. When our gaze shifts, eyelids, especially the upper
eyelids, move to avoid occluding vision. We also move our eyelids
to blink, and when expressing mental state such as arousal, sur-
prise, fatigue, and skepticism. The upper and lower eyelids move
in subtly different ways. Therefore, we use two additional input pa-
rameters to define aperture. One is the displacement of the midpoint
of the upper eyelid above a reference horizontal plane with respect
to the head (g4); the plane is chosen to correspond to the position
of the eyelid when closed. The other input is the displacement of
the midpoint of the lower eyelid below this plane (g5).

Expressions. The skin in the eye region is also affected by facial
expressions, such as surprise, anger, and squint. We can option-
ally extend the input parameters g to include additional parameters
to control complex facial expressions. Expressions may be con-
structed using Action Units (AUs), defined by the Facial Action
Coding System (FACS) [Ekman and Friesen 1977]. In our imple-
mentation, AUs are used in a similar way as blend shapes; they may
be learned from using ‘sample poses’ that a subject is asked to per-
form or could also be specified by an artist. See Table 1 (left). The
strength of the ith AU used in the model contributes an additional
input parameter, gi+10 ∈ [0, 1]. Note that we defined five parame-
ters per eye (3 gaze and 2 aperture), which together contribute the
first 10 inputs.

Sample poses Expression generation
AU FACS name Sample poses AUs
1 Inner brow raiser Surprise 1, 2, 5
2 Outer brow raiser Anger 4, 5
4 Brow lowerer Fear 1, 2, 4, 5
5 Upper lid raiser Sadness 1, 4
43 Eyes closed Squint 44
44 Squint Blink 5, 43

Table 1: FACS AU used in our experiments (left) and expressions
that can be produced using these AUs (right).

4.2 Generative Model of Skin Movement

Following these observations, we factor the generative model into
three parts – baseline aperture model, eyelid shape model, and skin
motion model. Each of these models can be constructed or learned
separately. A schematic diagram of the implementation is shown in
Fig. 4.

In the following, we will assume g is a ni×1 column matrix, where
ni is the total number of possible inputs. Submatrices are extracted
using Matlab-style indexing, e.g., g1:3 is the submatrix comprised
of rows 1 to 3, and g[4,5] is a submatrix with just the fourth and
fifth elements. To achieve real-time performance at low computa-
tional costs, and also to exploit GPU computation using WebGL,
we choose linear models for this application. We have explored us-
ing non-linear neural network models but these are more expensive
to evaluate.

Eyelid Aperture Model. As discussed above, the aperture depends



Skin 

meshEyelid Shape Model Skin Motion Model

Eyelid 

shape

gaze

Additional parameters

Aperture 

model

aperture control parameter default rest skin position
Right eye

Left eye

Figure 4: Gaze parametrized skin movement: We predict eyelid aperture from gaze using an aperture model, and we use gaze and aperture
together to predict skin deformation in the eye region. If desired, expression parameters can also be included to produce facial expressions.

on gaze, but it is modulated by other voluntary actions such as
blinking. We use a linear baseline aperture model,A, for predicting
the aperture due to gaze; since the torsion angle of the globe does
not have a significant effect on aperture, we only use the first two
components of gaze. The baseline aperture is then scaled by the eye
closing factor c ≥ 0 to simulate blinks, arousal, etc. The resulting
model for the left eye is:

g[4,5] = c A g[1,2]. (1)

Eyelid Shape Model. We observed that the deformation of skin in
the eye region is well correlated with the shape of the eyelid margin.
This makes biomechanical sense, since the soft tissues around the
eye move primarily due to the activation of muscles surrounding the
eyelids, namely orbicularis oculi and levator palpebrae muscles.
We define eyelid shape for each eyelid as piecewise cubic spline
curves. We found that using between 17 and 22 control points for
each spline faithfully captures the shape of the eyelids. The eyelid
shape depends on both gaze and aperture. The general form of the
model is

l = L g, (2)

where l is the column matrix of coordinates of all control points for
the eyelid.

Skin Motion Model. The skin of the eye region is modeled at high
resolution (using about a thousand vertices in our examples). It is
deformed based on the movement of the eyelids. We use a linear
model for this, since the skin movement can then be efficiently eval-
uated using vertex shaders on the GPU, and also learned quickly.
Note that the skin motion depends on all four eyelids; the stacked
vector of coordinates of all four eyelids is denoted l. The resulting
model is

u = u0 +M l, (3)

where u0 is the default rest position of the skin.

5 Transferring Animations

The skin motion model of Sec. 4.2 is constructed for a specific sub-
ject. The skin model may not include some parts, such as the inner
eyelid margins, which are difficult see and track in video. Here we
discuss how the information in the generative model can be trans-
ferred to other target characters and to untracked parts of eye region.

Target Transfer. Given a new target character mesh with topol-
ogy different from the captured subject mesh (3D face mesh of the
subject for whom the model was constructed), we have to map the
model output u to new image coordinates ũ representing the mo-
tion of the new mesh in image coordinates. The map is computed

as follows: we first use a non-rigid ICP method [Li et al. 2008] to
register the target mesh to the captured subject mesh in 3D. The
resulting mesh is called the registered mesh. The vertices of the
registered mesh are then snapped to the nearest faces of the cap-
tured subject mesh. We compute the barycentric weights of the
registered mesh vertices with respect to the captured subject mesh,
and construct a sparse matrix B of barycentric coordinates that can
transform u to ũ as ũ = Bu (see Fig. 5).

Movement Extrapolation. Some vertices of the target mesh, par-
ticularly those of the inner eyelid margin, are not included in the
skin movement model computed in Eq. 3. This is because such
vertices cannot be tracked in video and it is difficult to build a data-
driven model for them. Instead the skin coordinates of those ver-
tices are computed as a weighted sum of nearby tracked vertices.
The normalized weights are proportional to the inverse distance to
the neighboring points (we used 10) in the starting frame.

6 Client Applications

We implemented two different client applications using WebGL and
JavaScript. Both synthesize animations of the eye region in real
time using our model. We used the Digital Emily data provided by
the WikiHuman project [Ghosh et al. 2011; WikiHuman ]. The ap-
plications start by downloading all the required mesh, texture, and
model data. Then, they run offline and perform all computations
without communicating with a server. Blink input is handled by a
stochastic blink model [Trutoiu et al. 2011]. Wrinkles are synthe-
sized using an additional wrinkle map texture.

The two applications differ only on the model input sources: one is
a fully interactive user controlled application, while the other plays
a cut-scene defined using keyframed animation curves (which are
also displayed on screen).

We now discuss some important details of these applications.

Optimized Motion Model Since all our operations are linear, we
can premultiply the eyelid shape models L and the skin motion
model M to construct one large matrix. However, using princi-
pal components analysis (PCA) we found that the results are well
approximated using only 4 principal components. The PCA is pre-
computed on the server, and can be computed at model construction
time. This results in a significantly smaller matrices, U (tall and
skinny) and W (small), such that

M l ≈ U Wg. (4)



Figure 5: An overview of target transfer. (a) The target character mesh (red) is registered non-rigidly on the capture subject mesh (blue)
shown in the top row. Image coordinates of target mesh are computed from the image coordinates of the model output using barycentric
mapping computed during registration. (b) The model trained on one subject can be used to generate animation of a character mesh of any
topology uploaded by an user.

Only the smaller matrices U and W need to be downloaded from
the server. We compute e

def
= Wg on the CPU, and compute Ue

using per-vertex computations on the GPU’s vertex shader as de-
scribed below.

Reconstructing 3D Geometry Recall that we represent the 3D
coordinates x of the original skull mesh using the 2D skin coordi-
nates u corresponding to the neutral pose. To determine 3D vertex
positions x from u we pre-render a depth texture of x in 2D skin
space using natural neighbor interpolation on the vertices values.
This texture, which we name the skull map, can be sampled to ob-
tain x from u. We also render a skull normal map using the same
procedure to sample normals given u.
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Figure 6: Flow chart of how inputs are handled in our applications
by the animation model.

GPU Computations Our framework is well suited for real-time
synthesis using GPUs. While the aperture model and the PCA-
reduced motion model W are applied on the CPU, the PCA recon-
struction using U is performed on the GPU, per vertex, as a matrix-

vector multiplication in the vertex shader. Expression wrinkles are
generated by blending the wrinkle bump maps using the expression
parameters as weights in the fragment shader.

Our model predicts motion of the skin in 2D modeling camera co-
ordinates. The vertices are then lifted to their final 3D positions by
sampling the skull map. However, since the globe is not spherical
and has a prominent cornea, rotations of the globe should produce
subsurface deformations of the skin. To address this challenge, we
first represent the shape of the globe in polar coordinates in the
globe’s reference frame, and precompute a depth map D(g1, g2)
that represents the globe shape. For each frame, vertices of the
eyelid are radially displaced from the cornea surface at the current
globe orientation, using the depth map and the skin thickness.

Additionally, some of the extrapolated vertices (such as those in the
canthus and eyelid margins) should not slide directly on the skull
or globe geometry. Hence we handle these vertices differently. For
each extrapolated vertex, we precompute the radial distance o be-
tween the original vertex position of the target mesh and the globe.
We then offset the skin vertex at its current position on the skull
by o. This allows us to reconstruct the eyelid margin thickness and
canthus depressions. The skin normal, especially for an extrapo-
lated vertex in the eyelid margin, is computed by parallel transport
from the normal at its original position to its current position.

WebGL Considerations One of the main limitations of current
WebGL enabled mobile devices is that there is no support for multi-
pass rendering. This feature is extremely important for less tradi-
tional rendering methods such as deferred shading, post-processing
effects or, more importantly for our case, subsurface scattering
methods.

To achieve realistic real-time skin rendering it is standard to ap-
ply an approximation of the subsurface scattering proprieties of the
skin. We implement the method proposed by Jimenez et al. [2015].
It requires 3 rendering passes: the first projects the geometry to
generate screen space diffuse, specular and depth maps of the skin.
This is followed by two screen space passes that perform a Gaus-
sian blur on the diffuse illumination map taking into account the
depth map. The last of these passes will also sum the diffuse and



Figure 7: We can generate facial expressions interactively. From left to right: normal, frown, surprise, and eye closure expressions are
shown.

specular illuminations to achieve the final result.

In our implementation, while we still only perform 3 passes, we
need to perform two geometric passes (instead of one): the first
rendering pass generates the diffuse illumination and depth maps
(depth is stored in the alpha channel). The second one is a screen
space Gaussian blur. The third, although it performs the screen
space blur, also computes specular illumination and sums it to the
diffuse for the final result. Hence, our optimized SSSS system for
WebGL requires our vertex shader program to run twice per frame.
This is taken into account in Table 2.

7 Results

The applications run in any modern browser, at 60fps on a desktop
with an Intel Core i7 processor and an NVIDIA GeForce GTX 780
graphics card, and at 24fps on an ultraportable laptop with an In-
tel Core i7 processor and integrated Intel HD 5500 Graphics, and
at 6fps on a Nexus 5 android phone with Adreno 330 GPU. The
majority of workload is for rendering; the model itself is very inex-
pensive (see Table 2).

Readers can try the WebGL application on the Internet, at
http://www.cs.ubc.ca/research/eyemoveweb3d16/.
A video of the results is provided as supplementary material. The
accompanying video shows a clip captured live from the appli-
cation running in a browser. In the video, we also included head
movements of a user tracked using FaceShift and a statistical blink
model [Trutoiu et al. 2011] for realism. Different expressions,
such as surprise and anger, are added at key moments. Please note
changes in wrinkles and eyes during these expressions.

Saliency Map Controlled Movement. When we observe object
motion in real life or in a video, our eyes produce characteristic
saccades. We computed saliency maps, a representation of visual
attention, using the method proposed in [Itti et al. 1998]. Points in
the image that are most salient are used as gaze targets to produce
skin movements around the eyes. In Fig. 8 and also in the accom-
panying video, we show an example of skin movement controlled
by gaze, using salient points detected in a video of a hockey match.

Static Scene Observation. Our generative gaze model can be
controlled by gaze data obtained from any eye tracking system. We
used gaze data of a subject observing a painting to drive our system.
This produces very realistic movements of eyelid and skin around
the eyes as can be seen in Fig. 9.

Figure 9: Skin movement driven by gaze during static scene obser-
vation. The red circle in the left represents the image point subject
is looking at.

Eyelid Deformation during Blink. We can generate skin defor-
mation in a blink sequence using a statistical blink model that con-
trols aperture based on the experimental data reported in [Trutoiu
et al. 2011]. A blink sequence is shown in Fig. 10.

Figure 10: Skin deformation in eye closing during a blink. The
characteristic medial motion of the lower eyelid during blink is gen-
erated by the model (shown using red arrow).

Vestibulo-ocular Reflex. Our model can also generate eye re-
gion movement in novel scenarios in which the head moves. For ex-
ample, when a character fixates on an object and rotates its head, the
eyes counter-rotate. This phenomenon is known as the ‘vestibulo-
ocular reflex’. Our model predicts the skin deformation on the eye-
lid and around the eyes during such movements. Please see the
video.

8 Conclusion

Despite an enormous amount of previous work on modeling eyes
for computer animation, the motion of soft tissues around the eyes
when a character’s eyes move has largely been neglected. Our work



Animation Type File download (MB) Memory Usage (MB) GPU memory (MB) Runtime per frame (ms)
Static 3.7 240 390 0.5450 ± 0.1553
Animated Emily 5.3 370 417 0.6717 ± 0.1564
Animation overhead 1.6 130 27 0.1267 ± 0.0011

Table 2: Overview of the model size, memory usage, and performance of the animation. The experiments are run in Chrome web browser on
a desktop with an Intel Core i7 processor and an NVIDIA GeForce GTX 780 graphics card at 60 fps.

(a)                                                                              (b)                                             

(c)                                                                               (d)                                             

Figure 8: Facial animation automatically generated from a hockey video. The character starts watching the match with a neutral expression
(a), our stochastic model generates natural blinks (b), gets anxious on anticipating a goal (c), and excited when a goal is scored (d). The
salient points are computed from the video and used as input to our system.

Figure 11: Comparison with no skin deformations(top), and with
deformation (bottom) using our model with different gaze positions.

is the first to specifically address the problem of soft tissue move-
ments in the entire region of the eye. The model is also inexpensive
in terms of run times and memory, as seen in Table 2. Our model
currently has a few limitations that we hope to address in the near

future. These include the linearity of the generative model required
for inexpensive simulation in the browser using WebGL, and the
lack of eyelashes. Nevertheless, the system is able to generate real-
istic eye movements using a variety of input stimuli.
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Appendices

A Measurement for Data-driven Model Con-
struction

Here we briefly outline the measurement process that was used to
construct the model in our system. Offline capture is conducted in a
studio setup. To measure the motion around the eye region, we used
a single Grasshopper3 2 camera that can capture up to 120 fps with
image resolution of 1960×1200 pixels. The actor sits in a chair and
faces the camera with the head rested on a chin rest. The scene is lit
by a DC powered LED light source 3 to overcome the flickering due
to the ambient AC light source on the high frame rate capture. We
use polarizing filters with the cameras to reduce specularity. We

2Point Grey Research, Vancouver, Canada
3https://www.superbrightleds.com
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ask the subject to look at targets generated on a screen, and also
to move their eyes as instructed. These data are used to measure
skin motion for different gaze positions. We also ask the subject to
display different facial expressions (e.g., brow raise, eyebrow gath-
ering, etc., listed as action units in the Facial Action Coding System
(FACS) [Ekman and Friesen 1977]). They are used to model addi-
tional parameters. Camera calibration is performed using Matlab’s
Computer Vision System Toolbox to compute the camera projec-
tion matrix P . Our skin tracking algorithm requires a subject spe-
cific 3D mesh called skull; to acquire this we use FaceShift [Weise
et al. 2011] technology with a Kinect RGB/D camera. This process
takes less than 15 minutes per subject.


